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Introduction. A class of modern applications processes data that arrives rapidly and continuously, generically called
data streams, for the purpose of integrity-monitoring or early warning of critical developments in a system. Data
stream processing algorithms are (a) highly space-time efficient, (b) provide guaranteed errors and (c) are single-pass
or online algorithms. An input stream is viewed as a potentially unbounded sequence of records of the form (pos, i, v),
where, pos is the sequence number, i ∈ {1, 2, . . . , n} = [n], v is an integer, such that ∣v∣ ≤ M , which reflects the
change to the frequency fi of item i, that is, corresponding to the input record (pos, i, v) changes fi ← fi + v. Hence
fi =

∑
(pos,i,v) v. The vector f = [f1, f2, . . . , fn]T is called the frequency vector of the stream. Let m be the number of

records appearing in the stream. The pth moment of the frequency vector of a stream is defined as Fp =
∑
i∈[n]∣fi∣p.

The problem of estimating Fp has been fundamental to the development of data stream algorithms [1, 9, 2, 5]. It
also has applications, for example, in network monitoring [4], approximate histogram maintenance for database query
optimization and computing document similarities [11], etc..

Previous Work. Indyk in [9] pioneered random linear p-stable sketches and showed that a 1±�-approximation of F1

with probability 15/16 is obtained by mediansr=1∣Xr∣, where, Xr are i.i.d. 1-stable sketches and s = O(�−2). A p-stable
sketch is a linear combination X =

∑n
i=1 aisi where the si’s are drawn independently from p-stable distribution St(p, 1)

with scale factor 1 (see [14]). For p = 1, the Cauchy distribution (density function f(x) = 1/(�(1 + x2)), x ∈ ℝ) is
1-stable. Indyk uses Nisan’s pseudorandom generator for fooling space bounded computations to reduce randomness
requirement of full independence of the stable variables. Li in [11] shows that for any 0 < p ≤ 2 and k ≥ 3, there is a
function C(p, k) such that the geometric means estimator F̂GM

p (X1, . . . , Xk) = (C(p, k))−1∣X1∣p/k ⋅ ∣X2∣p/k ⋅ ⋅ ⋅ ∣Xk∣p/k

satisfies E[F̂p] = Fp and Var
[
F̂p
]

= (Kp,k−1)F2p, where, Kp,k = 1+�2(2+p2)/(12k)+O(1/k2). The space requirement

of both Indyk’s and Li’s algorithm is O(�−2 log2(mM)). This is reduced to O(�−2 log(mM)) by Kane et.al. [10] and is
shown to be tight [16, 10]. The algorithms of Indyk, Li and Kane et.al. require time Ω(�−2 ⋅polylog(mMn)) to process
each stream update. Since data stream updates arrive very rapidly and � can be small (.01 to 0.001), it is essential to
reduce the time required to process each stream update. In this measure, the Hss based algorithm in [7] with update
time O(log2(mM)) qualifies, although it has sub-optimal space usage O(�−3 log2(mM)).

This work. We present an algorithm for estimating F1 that is nearly optimal with respect to space O(�−2 log2(mM))
and has update processing time that is O(log2(mnM) log(�−1)). After submission of this work in arXiv [8], we were
made aware of the work in [12] (personal communication from Jelani Nelson) which was not available publicly till
then. Their work presents an algorithm that is similar to the one presented in this paper.
Algorithm. The algorithm separates items based on some estimate of its frequency into “heavy” and “light” items,
and then to separately estimate the contributions of heavy and light items to F1 and return the sum. Notation.
If ∣fs1 ∣ ≥ ∣fs2 ∣ ≥ . . . ≥ ∣fsn ∣ is an ordering of the items by non-increasing values of absolute frequencies, then,
F res
p (k) =

∑n
j=k+1∣fsj ∣p. Let B = 150/�2 and C = 64B. The heavy items are identified as follows. Keep a

Countsketch structure [3] denoted as HH2, consisting of O(log n) hash tables where each hash table has 64C

buckets. The structure returns an estimate f̂i satisfying ∣f̂i − fi∣ ≤ (F res
2 (B)/C)1/2, for all i ∈ [n], with joint proba-

bility of success 63/64. The algorithm of [6] is applied to HH2 to obtain F̂ res
2 (B) that is accurate to within 1 ± 1/8

of F res
2 (B) with probability 63/64. An item is said to be heavy if f̂i ≥ (4/3)F̂ res

2 (B)/B. The set of heavy items is
denoted by H; the light items form the set L = [n] ∖H. A family of functions ℋ mapping [n] to [q] is S-uniform [15]
for a given S ⊂ [n] if Prℎ∈ℋ [∧j∈Sℎ(j) = yj ] = 1/q∣S∣ for any choice of yj ∈ [q], j ∈ S. The family ℋ is said to be
S-uniform with probability 1− �, if there is a subset of ℋ′ ⊂ ℋ of “good” hash functions such that ℋ′ is S-uniform,
and ∣ℋ′∣ ≥ (1− �)∣ℋ∣. An implication of Siegel’s construction [15] is reproduced below.
Theorem 1 ([15]). For every n > 0, 0 < k < n, r ≥ 0, q = 2k, d ≥ (r + 1) log n+ log k + 1, all integral, there exists
a family of functions ℋ(n, k, q, r, d) mapping [n] to [q] such that, (1) a random choice ℎ ∈R ℋ is S-uniform for any
subset S ⊂ [n] of size k with probability more than 1 − n−rd, (2) each ℎ ∈ H can be represented using dq(log q) bits,
and (3) ℎ(x) can be computed in time O(d2) operations over log q-bit numbers.

The light estimator uses the following structure. Keep a hash table U having C buckets numbered 1 to C and a hash
function ℎ : [n]→ [C] chosen randomly from ℋ(n, k, q, r, d), where, k = C/2, q = C, r = 1 and d = 2 log n+ logC + 1.
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Each bucket U [b] maintains three p-stable sketches denoted by Xb,1, Xb,2 and Xb,3 of the sub-stream hashing to b:
Xb,r =

∑
i:ℎ(i)=b fisb,r(i), b ∈ [C], r ∈ {1, 2, 3} . For each value of b and r, the variables {sb,r(i)}i∈[n] are obtained

by using Nisan’s PRG [13] using a seed size of T = O((log((mM�−1))(log n)). For each value of b, the seeds for
sb,r(i) and sb,r′(i

′), r ∕= r′ are three-wise independent. Across buckets in the same table, the seeds for the random
variables sb,r(i) and sb′,r′(i

′), for b ∕= b′ are pair-wise independent. The light estimator is the following. For bucket
index b ∈ [C] say that the event NoCollision(b,H) holds if no heavy item maps to bucket b in table U , that is,
NoCollision(b,H) ≡ ∀k ∈ H,ℎ(k) ∕= b . For a light item j ∈ [n] ∖H, define NoCollision(j,H) to be the event that
j does not map to any of the buckets to which H maps, that is, ℎ(j) ∕= ℎ(i),∀i ∈ H. Then,

F̂Lp = CL
∑

b∈[C]:NoCollision(b,H)

F̂GM
p (Xb,1, Xb,2, Xb,3), where, CL = 1/Pr [NoCollision(j,H)] = (1− 1/C)−∣H∣ .

The heavy estimator uses the following structure. Keep a collection of g = O(log �−1) hash tables T1, T2, . . . , Tg,
each consisting of C buckets and corresponding hash function ℎt : [n]→ [C] for t ∈ [g]. Each bucket of a table contains
a single AMS sketch of the sub-stream of items mapping to that bucket, that is, Tt[b] =

∑
ℎt(i)=b

fi�t(i), where,

�t(i) ∈R {1,−1}, the family {�t(i)}i∈[n] for each fixed t is pair-wise independent and the seeds generating {�t(i)}t∈[g]

are pair-wise independent. The ℎt’s are chosen uniformly at random and independently from ℋ(n, k, q, r, d) with the
same parameter settings as before. The estimate for F1 is obtained as follows. Say that the event NoHvyColl(H)
holds if for each i ∈ H, there is a table index �(i) ∈ [g] such that no other heavy item maps to the same bucket as i
in that table, that is,

NoHvyColl(H) ≡ ∀i ∈ H,∃�(i) ∈ [g] s.t. ∀k ∈ H∖{i}, ℎ�(i)(i) ∕= ℎ�(i)(k) .

The heavy estimate is defined assuming NoHvyColl(H) holds; otherwise it returns 0 (i.e., fails).

F̂H1 =
∑
i∈H

T�(i)[ℎ�(i)(i)] ⋅ sgn(f̂i) ⋅ ��(i)(i) if NoHvyColl(H) holds.

The final estimator is the sum of heavy and light estimators, namely, F̂1 = F̂H1 + F̂L
1 .

Analysis. Define GoodEst to be the event that (a) frequencies of heavy items are estimated accurately within
additive error of (F res

B /C)1/2 using HH2, and, (b) F res
2 (B) is estimated to within error of 1± 7/8. By property of the

Countsketch structure used for HH2 [3], the event GoodEst holds with probability 1−1/64. The rest of the analysis

is conditioned on GoodEst. An item i is heavy if f̂i > (4/3)(F̂ res
B /B)1/2. Since GoodEst holds, ∣fi− f̂i∣ ≤ (F res

B /C)1/2

and F̂ res
B > (7/8)F res

2 (B). So ∣fi∣ > (4/3)[(7/8)F res
2 (B)/B]1/2 − (F res

2 (B)/C)1/2 > 1.22(F res
2 (B)/B)1/2. Hence,

∣H∣ ≤ B +B/(1.22)2 ≤ (5/3)B.
We first analyze the light estimator. Let L = [n] ∖ H be the set of the light items. There are two sets of

independent random bits: the random seed for the hash function ℎ ∈ ℋ and the stable sketch random seed s̄. For
bucket index b, denote by F̂GM

p (b) the geometric means estimator applied to the sketches in U [b]. For simplicity of
notation, let ℰb,ℎ = ℰb,ℎ,H denote the event NoCollision(b,H) for b ∈ [C] and similarly let ℰj,ℎ denote the event
NoCollision(j,H) for a light item j. The two events are related: ℰj,ℎ ≡ ℰℎ(j),ℎ, for each j ∈ L. Given any event say
ℰ , we define the boolean variable I(ℰ) that is 1 if ℰ holds and I(ℰ) is 0 if ℰ does not hold.
By property of F̂GM

p , E[F̂GM
p (b)] =

∑
j:ℎ(i)=b∣fi∣. The analysis for the light estimator is done for p ∈ (0, 2].

E[F̂Lp ] = CLEℎ
[∑
b:ℰb,ℎ

Es̄
[
F̂GM
p (b) ∣ ℎ

]]
= CLEℎ

[∑
b:ℰb,ℎ

∑
ℎ(j)=b

∣fj ∣p
]

= CLEℎ
[∑
j∈L
∣fj ∣pI(ℰj,ℎ)

]
= CL

∑
j∈L
∣fj ∣p ⋅ Pr [ℰj,ℎ] =

∑
j∈L
∣fj ∣p .

The last equality follows from the fact that Pr [ℰj,ℎ] = 1/CL under S-uniformity, which may fail with probability at
most n−rd. The variance calculation is as follows.

Varℎ,s̄
[
F̂Lp

]
= C2

LE
[
(F̂Lp )2

]
− (FLp )2 = C2

LEℎ,s̄
[∑
b:ℰbℎ

(F̂GM
p (b))2

]
+ C2

LEℎ,s̄
[ ∑
b∕=b′,ℰbℎ∧ℰb′ℎ

F̂GM
p (b)F̂GM

p (b′)
]
− (FLp )2 (1)

The first expectation term above is bounded using the property of F̂GM
p (see Introduction).

Eℎ,s̄
[
(F̂Lp )2

]
= Eℎ

[
Es̄
[∑
b:ℰbℎ

(F̂GM
p (b))2 ∣ ℎ

]]
= Eℎ

[∑
b:ℰbℎ

∑
ℎ(j)=b

Kp∣fj ∣2p
]

= KpEℎ
[∑
j∈L
∣fj ∣2p ⋅ I(ℰj,ℎ)

]
=
∑
j∈L

Kp∣fj ∣2p⋅(1/CL) .

where the last equality follows from the (notational) fact Eℎ
[
I(ℰj,ℎ)

]
= Prℎ [ℰj,ℎ] = 1/CL.
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Consider the second expectation term of (1). Let D(ℎ, b, b′) ≡ b ∕= b′ ∧ ℰb,ℎ ∧ ℰb′ℎ. Since the seeds for stable sketches

of F̂GM
p (b) and F̂GM

p (b′) are pair-wise independent, and independent of the hash function seed, we have,

C2
LEℎ,s̄

[ ∑
D(ℎ,b,b′)

F̂GM
p (b)F̂GM

p (b′)
]

= C2
LEℎ

[ ∑
D(ℎ,b,b′)

Es̄
[
F̂GM
p (b)F̂GM

p (b′) ∣ ℎ
]]

= C2
LEℎ

[ ∑
D(ℎ,b,b′)

∑
ℎ(j)=b

∣fj ∣p
∑

ℎ(j′)=b′

∣fj′ ∣p
]

= C2
L

∑
j,j′∈L,j ∕=j′

∣fj ∣p∣fj′ ∣pPrℎ
[
ℰj,ℎ ∧ ℰℎj′ ∧ ℎ(j) ∕= ℎ(j′)

]
= C2

L

∑
j,j′∈L,j ∕=j′

∣fj ∣p∣fj′ ∣p(1/CL)2(1− 1/C)

where the last equality follows from the S-uniform property of ℋ. Note that this term is smaller than the cross terms’
contribution coming from (FLp )2. Substituting in (1), we have Var

[
F̂Lp
]

= (KpCL − 1)
∑
j∈L∣fj ∣2p.

The following lemma is proved using standard techniques.

Lemma 2. Suppose ∣fs1 ∣ ≥ ∣fs2 ∣ ≥ . . . ≥ ∣fsn ∣. Then, for 0 < p ≤ q,
∑n
j=B+1∣fsi ∣q ≤ (1/Bq/p−1)

(∑n
j=1∣fsi ∣p

)q/p
.

Since light items satisfy fi ≤ (1.22)F res
2 (B)/B, hence, by Lemma 2,∑

j∈L
∣fj ∣2p ≤ (1.22)p/2

(
F res

2 (B)/B
)p/2∑

j∈L
∣fj ∣p ≤ (1.22)p/2(Fp/B)Fp ≤ (1.22)p/2F 2

p /B .

Since, Kp ≤ 3 for p = 1 (see Introduction) and CL < 1, Var[F̂L1 ] ≤ (K1CL − 1)
√

1.22�2F 2
1 /B ≤ F 2

1 �
2/64, since

B = 150�−2. Applying Chebychev inequality,
∣∣F̂L1 − FL1 ∣∣ ≤ (�/2)F1 with probability 1-1/16.

Consider the heavy estimator. Since GoodEst holds, sgn(f̂i) = sgn(fi) and hence fi ⋅ sgn(f̂i) = ∣fi∣. Denote the
random seed vector of the hash functions ℎ1, . . . , ℎg by ℎ̄ and the random seed vector of the AMS sketches by �̄. For
brevity, denote NoHvyColl(H) = ℰℎ̄,H . Let yijr denote the indicator variable that is 1 if items i and j collide to

the same bucket in table r and is 0 otherwise, that is, yijr ≡ ℎr(i) = ℎr(j). By independence of ℎ̄ and �̄ and the
independence of the �’s across the tables,

E
[
F̂H1
]

= Eℎ̄

[∑
i∈H

E�̄

[ ∑
j:ℎ�(i)(i)=ℎ�(i)(j)

fj��(i)(j)��(i)(i) ∣ ℰℎ̄,H
]]

= Eℎ̄

[∑
i∈H

E��(i)

[∑
j∈[n]

fj��(i)(j)��(i)(i)yi,j,�(i) ∣ ℰℎ̄,H
]]

= Eℎ̄

[∑
i∈H
∣fi∣+

∑
i∈H

∑
j:ℎ�(i)(i)=ℎ�(i)(j),j ∕=i

fjE��(i)
[
��(i)(j)

]
E��(i)

[
��(i)(i)

]
yi,j,�(i) ∣ ℰℎ̄,H

]
= Eℎ̄

[∑
i∈H
∣fi∣
]

=
∑
i∈H
∣fi∣ = FH1 .

The third to last equality follows from the pair-wise independence of the family {�r(j)}j∈[n] and so for i ∕= j,

E��(i)
[
��(i)(i)��(i)(j)yij�(i)

]
= E��(i)

[
��(i)(j)

]
E��(i)

[
��(i)(i)

]
yij�(i) = 0 ⋅ 0 ⋅ yij�(i) = 0, since yij�(i) does not depend

on �̄. We now calculate Var
[
F̂H1
]
. Since, (�r(j))

2 = 1,

E
[
(F̂H1 )2

]
= Eℎ̄,�̄

[(∑
i∈H

∑
j∈[n]

fj��(i)(j)��(i)(i)yij�(i)

)2

∣ ℰℎ̄,H
]

= Eℎ̄,�̄

[ ∑
i∈H,j∈[n]

f2
j yi,j,�(i) ∣ ℰℎ̄,H

]
+

Eℎ̄,�̄

[ ∑
i∈H,j∈[n],i′∈H,j′∈[n],(i,j)∕=(i′,j′)

fjfj′��(i)(j)��(i)(i)��(i′)(j
′)��(i′)(i

′)yij�(i)yi′j′�(i′) ∣ ℰℎ̄,H
]

(2)

Consider the second term in the RHS of (2): E�̄
[
��(i)(j)��(i)(i)��(i′)(j

′)��(i′)(i
′)
]
. There are two cases: (1) �(i) = �(i′)

and (2) �(i) ∕= �(i′). If �(i) = �(i′) = r (say), the term is E�r [�r(i)�r(j)�r(i
′)�r(j

′)]. Since (i, j) ∕= (i′, j′), by 4-wise inde-
pendence, this expectation is 0. In the other case, letting r′ = �(i′), the term becomes E�r,�r′ [�r(j)�r(i)�r′(i)�r′(j

′)] =
E�r [�r(i)�r(j)]E�r′ [�r′(i

′)�r′(j
′)] by pair-wise independence among the seeds of {�r}r∈[g]. Since (i, j) ∕= (i′, j′) at least

one of two expectations is 0 by 4-wise independence of {�r(i)}i∈[n], for each r ∈ [g]. So E�̄
[
��(i)(j)��(i)(i)��(i′)(j

′)��(i′)(i
′)
]

=

0. Since, ℎ̄ is independent of �̄, therefore, E�̄
[
��(i)(j)��(i)(i)��(i′)(j

′)��(i′)(i
′) ∣ ℰℎ̄,H

]
= 0, for each i ∈ H, implying that

the second expectation term is 0. Now consider the first term in the RHS of (2).

Eℎ̄,�̄

[ ∑
i∈H,j∈[n]

f2
j yi,j,�(i) ∣ ℰℎ̄,H

]
= Eℎ̄

[ ∑
i∈H,j∈[n]

f2
j yi,j,�(i) ∣ ℰℎ̄,H

]
=

∑
i∈H,j∈[n]

f2
j Prℎ̄

[
yij�(i) = 1 ∣ ℰℎ̄,H

]
The hash family is assumed to be S-uniform for ∣S∣ = 32B and ∣H∣ ≤ 1.5B. So, for i ∈ H and j ∈ ([n] ∖ H),
Prℎr

[
ℎr(i) = ℎr(j) ∣ ℰℎ̄,H

]
= Pr [ℎr(i) = ℎr(j)] = 1/C. If i = j, then the above probability is 1, and if i, j ∈ H and

i ∕= j, then, the above probability is 0, since ℰℎ̄,H excludes this condition. Therefore,

Var
[
F̂H1
]

=
∑
i∈H

f2
i +

∑
i∈H,j∈[n]∖H

(1/C)f2
j − (FH1 )2 ≤ (∣H∣/C)

∑
j∈[n]∖H

f2
j = (∣H∣/C)F res

2 (H)

≤ (∣H∣/C)(3/2)F res
2 (∣H∣) ≤ (3/2)(∣H∣/C)F 2

1 /∣H∣2−1 = 3�2F 2
1 /2048 .
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Here F res
2 (H) =

∑
j∈[n]∖H f

2
j . The first inequality of the second line above uses Lemma 3 from [6] by setting C = 64B

and ∣H∣ ≤ (5/3)B. The second inequality in second line follows using Lemma 2. Applying Chebychev’s inequality,
∣F̂H1 − FH1 ∣ ≤ (�/4)F1 with probability at least 15/16.

Lemma 3. Let H be the set of top-k items with respect to estimated frequencies using a Countsketch structure with
C buckets per table. If k ≤ 8B, then, F res

2 (k) ≤ F res
2 (K) ≤ F res

2 (k)
(
1 + 2

√
k/C + (k/C)

)
.

Adding the errors of the light and heavy estimator using triangle inequality, ∣F̂1 − F1∣ ≤ ∣F̂H1 − FH1 ∣ + ∣F̂L1 − FL1 ∣ ≤
(�/2 + �/4)F1 ≤ (3�/4)F1. The failure probability of the algorithm is 1/16 each for the application of Chebychev’s
bound for light and heavy estimation respectively plus the failure probability of 1/64 of GoodEst plus the failure proba-
bility of ((log(1/�))+1)n−(2 logn) for S-uniform hashing. The total failure probability is at most 1/7. The random seed
length for storing the hash functions is O(�−2(log(n�−1))(log(�−1)), for the AMS sketches is O(�−2(log(�−1))(log(mM))
bits. The seed for PRG is O((log(mM))(log n))) bits long. The time taken to evaluate the hash functions is
O((log �−1)(log(n�−1))2) and the time required to generate the relevant portion of the generated seed is O(log n).
We have now proved the following theorem.

Theorem 4. For each 0 < � < 1, there is an algorithm that returns a 1 ± �-factor accurate estimate for F1

with probability 6/7 using space O(�−2(log(n�−1mM))(log(�−1)) bits and can process each stream update in time
O((log �−1)(log(n�−1))2).
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